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Introduction

Definition: Convex functions

A function f : X — R is said to be convex if it always lies below its
Introduction to Chords, that |S

Convexity

V(x,y,7) € X x X x [0,1]

(1 =)x+7y) < (1 =PfX) +1(Y). (1.2)
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For a convex function f and convex set X find x* € X such that

X* = argmin f(x) (1.3)
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and Definitions f(x) = f(y) < gT(X = y) (23)

The set of subgradients of f at x is denoted 9f(x).
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We say that a continuously differentiable function f is g-smooth if
the gradient Vf is g-Lipschitz, that is

[V(x) — V)
x =yl

< B. (2.4)
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SRR following improved subgradient inequality:

) = () S VIO (x =) = Slx =y (25)
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Definition: Strong Convexity

Main Thearems We say that f : X — R is a-strongly convex if it satisfies the
SRR following improved subgradient inequality:

) = () S VIO (x =) = Slx =y (25)

Another view:
(6%
f(x) = Vi) (x—y) + 5lx— yI? < f(y)

—Vf(x)T(x — y) must be strong enough to ensure its sum with
() + 5llx =yl is < f(y)



Projected Gradient Descent

Convex
Optimization

Assumptions:
X is contained in a Euclidean ball of radius R.



Projected Gradient Descent

Convex
Optimization

sbotys

Assumptions:
X is contained in a Euclidean ball of radius R.
Vg € 9f(x),|g]| <L (fis L-Lipschitz)



Projected Gradient Descent

Convex
Optimization

Brennan Gebotys

Assumptions:
X is contained in a Euclidean ball of radius R.
Vg € 9f(x),|g]| <L (fis L-Lipschitz)

Define the projection operator of x on X’ as MNx(x). In this case,

My (x) = argmin ||x — y|| (3.1)
yex
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Definition: PGD Algorithm

Fort>1:

Yir1 = Xt — ngt, where g; € 0f(x;) (3.2)

Y41

projection (3.3)

gradient step

32
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Definition: PGD Algorithm

Fort>1:

Yt+1 = Xt — ngr, where g € 0f(x;) (3.2)
X1 = Nx(Ves1) (3.3)

Y41

projection (3.3)

gradient step
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Theorem: Convergence

The projected subgradient descent method with n = TRﬁ satisfies

1< .. _RL
f<7;xs> —f(x*) < e (3.4)



Convergence

Theorem: Convergence

The projected subgradient descent method with = ; \/ satisfies

( sz>—fx)<%. (3.4)

To prove this we require more convex knowledge.
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is a solution of (1.3) if and only if

(f'(x*),x —x*) >0 (3.5)

Let x* be a solution to (1.3). Assume Ix € X such that
(f'(x*),x —x*) <0

Consider ¢(«o) = f(x* + a(x — x*)),a € [0,1].
Note:
¢(0) = f(x*),¢'(0) = (f'(x"), x = x7) <0
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Let X be a closed convex set and f be a convex function. Then x*
is a solution of (1.3) if and only if

(f'(x*),x —x*) >0 (3.5)

Let x* be a solution to (1.3). Assume Ix € X such that
(f'(x*),x —x*) <0

Consider ¢(«o) = f(x* + a(x — x*)),a € [0,1].
Note:
¢(0) = f(x*), ¢'(0) = (f(x"), x = x") <0

Then for a small enough «,

f(x* 4+ a(x — x*)) = ¢(a) < $(0) = f(x*).Contradiction. []
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(Mx(X0) — X0, X — MNx(x0)) >0 (3.6)
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Lemma

Let X be a closed convex set and xp ¢ X. Then forany x € X

(Mx(X0) — X0, X — MNx(x0)) >0 (3.6)

1
Note: For h(x) = §||x — Xol[2, Mx(Xo) € argmin, . h(X)

(W (Nx(X0)), X — Nx(x0)) >0  (3.5)
(Mx(X0) — X0, x — Nx(x)) >0 O
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Convex
Optimization Lemma

For any x € X we have

N2 (y) = x|+ |ly = M)l < [ly — x|I? (3.7)

.'\H?_ Tx ()|l

M (y)

I () — =l

lly — =l
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Proof:
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For any x € X we have

1M (y) = XI[Z + 1y = M) < [ly — x|I?

Proof:

I = N (W) = I1x =yl
=(y—Nx(y),2x = Nx(y) —y)
=(y —=MNx(y),2x = Nx(y) =y + (Nx(y) — Nx(¥)))
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Lemma

For any x € X we have

1M (y) = XI[Z + 1y = M) < [ly — x|I?

Proof:

2 —llx—ylP

= —Nxy),2x = Nx(y)—y)

=(y —Nx(y),2x = Nx(y) =y + (Nx(y) = Nx(¥)))

:< Nx(y),Nx(y) —y) +2( —Nx(y),x —Nx(y))
= (Ma(y) =y Nx(y) —y) —2(MNx(y) =y, x = Nx(y))

[Ix = Nx(y)]
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Lemma

For any x € X we have

1M (y) = XI[Z + 1y = M) < [ly — x|I?

Proof:

X = N (W)IZ = [1x = yII?

= —Nxy),2x = Nx(y)—y)

=(y —Nx(y),2x = Nx(y) =y + (Nx(y) = Nx(¥)))
=(y—Nx(y),Nx(y) —y) +2(y —Nx(y). x = Nx(y))
=—(Nx(y) =y, Nx(y) —y) —2(Nx(y) -y, x —Nx(y))
<-—(Nx(y)-y.Nx(y)-y)  (36) O
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Xer1 = Nx (Vi)
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Using (3.7) and ||¥s+1 — Nx(¥s+1)|] > 0 we have,
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[1Xs1 = X*|I2 < [1Yss1 — X712 (3.8)

Recall: PGD Algorithm

Vi1 = Xt — ngr, Where gy € 0f(x;)

Xer1 = Nx (Vi)

Lemmas

Using (3.7) and ||¥s+1 — Nx(¥s+1)|] > 0 we have,

1M (Vsr1) = X112+ [1¥sa1 = M Yot < [[Ysrr — 7|12

1M (Vsr1) = X*|P < (Yot = X7|P = [[Yort — Na(Yoir)I?
[Xs1 = X2 < [[Yorr — X2 O
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. The projected subgradient descent method with = ;7 satisfies

(3.9)

Proof: Using definition the of subgradients, (3.8) and the identity,
2a'b=||al[? +||b|[? - [la - b||* we get,

f(xs) = f(x*) < g¢ (% —x7)

- %(xs—ysmT(xs—x*) (3.2)

1 * *
= 2n(HXs—X 12 = lyser = X[ +11%s = Vo1 1)

1 * *
2 (1% = X1 = lxs.t = x"I2) + 5 5]*(3:8)
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2 2 n 2
(llxs = X717 = [[Xs1 = X7|I%) + 5 llgs]l

B~
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Theorem: Convergence

The projected subgradient descent method with = % satisfies

1 ¢ RL
f(=) xs)—f(x*) < —. 3.10
(t; ?) —fx) < (3.10)

1
06) = ') < 5o (1x6 = X712 = Ilxess = x7I1%) + s
t
t2
Do) () < ool =X+ =5
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Theorem: Convergence

The projected subgradient descent method with = % satisfies

1< RL
f(— Xs) — f(x*) < —. 3.10
(t; ?) —fx) < (3.10)
1
f(xs) — f(x*) < ?W(IIXS—X*HZ—HXW—X*\I2)+gllgs||2
t
tL2n
—f(x*) < — 124 =1
;f(XS) fx) < ool =X+ =
R?  qlt
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The projected subgradient descent method with 7 = ; \[ satisfies
RL
f( sz —fx)<W (3.11)
t
R?  plt
;f(xs)—f(x ) < 2 T

Using Jensen’s Inequality, f(1 378, x5) < 3520, f(xs)
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The projected subgradient descent method with 7 = ; \[ satisfies
RL
f( sz —fx)<W (3.11)
t
R?  plt
;f(xs)—f(x ) < 2 T

Using Jensen’s Inequality, f(1 378, x5) < 3520, f(xs)

f(} D xs) - f(x*) < ’j/é 0
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well-behaved in Euclidean norm (J|x||2 and ||g||2 are independent
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Example:
f on the Euclidean ball B; ,
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PGD convergence = /n/t (large n will be bad)

f has nice properties in || - || but is in a different vector space
than x (|| - |l2).

Dual Space (V) vs Primal Space (x)

Can we find a better way? Yes!
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Idea: Use an invertible mapping V: Primal — Dual and optimize
in the Dual

o Vo(x;)
gradient step \
Mirror Descent ‘} . V@(y i

R® projection (4.3

(va)-! Yi+1 D

1. Map x; to the dual, V& (x;)

2. Take a gradient step, VO(yi11) = V(X)) — ng (g € 9f(x))
3. Map back to the primal y; 1 = VO~ 'Vd(yp44)

4. Projectinto X, Xep1 = N% (V1)
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(i) @ is strictly convex and differentiable.
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(iii) The gradient of ¢ diverges on the boundary of D, that is

lim [|[Vo(x)|| = +oo.
X—0D
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Let D C R" be a convex open set such that X' is included in its
closure, thatis X € D,and X N D # (). We say that ® : D — R is
a mirror map if it safisfies the following properties:

(i) @ is strictly convex and differentiable.

Mirror Descent (i) The gradient of ¢ takes all possible values, that is V¢(D) =
R".

(iii) The gradient of ¢ diverges on the boundary of D, that is

lim [|[Vo(x)|| = +oo.
X—0D

Note: (ii) gives us invertibility! Why?
Hint: Vo(x;) —ng=v e R” L
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Let D C R" be a convex open set such that X' is included in its
closure, thatis X € D,and X N D # (). We say that ® : D — R is
a mirror map if it safisfies the following properties:

(i) @ is strictly convex and differentiable.

(i) The gradient of ¢ takes all possible values, that is V¢(D) =

R".
(iiiy The gradient of ¢ diverges on the boundary of D, that is

Mirror Descent

lim [|[V®(x)|| = +oo.
X—0D

Note: (ii) gives us invertibility! Why?
Hint: V& (x;) —ng =v € R" = V&(y;.1) for some y;1 € D and (i)

gives a 1-to-1 mapping.
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Optimization Definition: Bregman divergence

the Bregman divergence associated to f is

Ds(x,y) = f(x) = {(y) = Vi) (x ~ ) (4.1)

Mirror Descent



Mirror Descent: The Projection

Convex . . .
Optimization Definition: Bregman divergence

Brenna ebotys

the Bregman divergence associated to f is

Ds(x,y) = f(x) = {(y) = Vi) (x ~ ) (4.1)

We then define the projection operation

I'If\)g(y) = argmin Do (X, y).
XeEXND

Mirror Descent

E dp(xy)

/l ’ /;/(y) +(Vp,x — y)
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Convex
Optimization

Brennan Gebotys Example:
Taking ®(x) = %||x||§ onD =R"

Do(x,y) = f(x) = f(y) = (VF(y), x = y)
= 2B~ I3 —2{y.x—y)

= %(HXH% — Iyl —2{y, %) +2(y.y))

]
= 5(IIXIE + [yl - 2y, x))



Bergman Divergence Example

Convex
Optimization

Brenna botys Example-
Taking ®(x) = %IIXIIS onD =R"

Do(x,y) = f(x) — f(y) = (V(y), x — y)

]
= 5(IXIE = lIylE = 2(y, x = y))

Mirror Descent

= %(HXH% — Iyl —2{y, %) +2(y.y))

]
= 5(IIXIE + [yl - 2y, x))

;
= Slx =yl



Bergman Divergence Example

Convex

Optimization Example:
B Taking 0(x) = 2 Ix[Eon D = "
Do(x,y) = f(x) — f(y) — (VI(¥), x — y)
= 2B~ IyIB—2{y.x—y)
p— = 2B~ yIB~2(y. %) +2(y.y)
= 2B+ Iy -2 (. x)

;
= Slx—yIB

In this case Mirror Descent will be equivalent to PGD since
V<D(X,) =



Bergman Divergence Example

Convex

Optimization Example:
B Taking 0(x) — SKIZon D~
Do(x,y) = f(x) — f(y) — (VI(¥), x — y)
= 2B~ IyIB—2{y.x—y)
p— = 2B~ yIB~2(y. %) +2(y.y)
= 2B+ Iy -2 (. x)

;
= Slx—yIB

In this case Mirror Descent will be equivalent to PGD since
Vo(x) = x and N%.(y) =



Bergman Divergence Example

Convex

Optimization Example:
B Taking 0(x) — SKIZon D~
Do(x,y) = f(x) — f(y) — (VI(¥), x — y)
= 2B~ IyIB—2{y.x—y)
p— = 2B~ yIB~2(y. %) +2(y.y)
= 2B+ Iy -2 (. x)

;
= Slx—yIB

In this case Mirror Descent will be equivalent to PGD since
i 1
VO(x) = xi and N (y) = argminye y 5[1x — y|I3



Mirror Descent

Definition: Mirror Descent Algorithm

Let x4 € argmin, y~p ®(x). Thenfor t > 1, let y;,1 € D such that
VO(yir1) = VO(x;) — ngi, where g; € 0f(xy), (4.2)
and

Xtp1 € MR (Vi) (4.3)

Mirror Descent



Mirror Descent

Convex

Optimization Definition: Mirror Descent Algorithm

Let x4 € argmin, y~p ®(x). Thenfor t > 1, let y;,1 € D such that

Vo(yir1) = VO(Xx:) — ngr, Where g; € 9f(x;), (4.2)
and
Xt+1 € ng’((}/tﬂ)- (4.3)

Mirror Descent

Theorem: Mirror Descent Convergence

Let ® be a mirror map p-strongly convex on X N D w.r.t. || - ||. Let
R? = sup,c vqp P(X) — ®(x1), and f be convex and L-Lipschitz
w.r.t. || - ||. Then mirror descent with n = %\/ZTP satisfies

(2 i >_fx)<mﬁ )
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Mirror Descent

Convex
Optimization

But first, we need more lemmas!



Mirror Descent

Convex
Optimization

But first, we need more lemmas!

Lemma

(VH(x) = Vi(y)) " (x = 2) = Dr(x, ) + Di(z,x) — Di(z,y) (4.5)

Proof:



Mirror Descent

But first, we need more lemmas!

Lemma

(VH(x) = Vi(y)) " (x = 2) = Dr(x, ) + Di(z,x) — Di(z,y) (4.5)

Proof:

Di(x,y) + De(z,x) — Ds(z,y)

f(x) = f(y) = Vi) (x = y)) + (f(z) — f(x) = V(2) " (z - X))
f(z) — f(y) = Vi(y) (2 - y))
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But first, we need more lemmas!

Lemma

(VH(x) = Vi(y)) " (x = 2) = Dr(x, ) + Di(z,x) — Di(z,y) (4.5)



Convex

Optimization

ViDi(x,y) = Vi(x) = VI(y)

Proof:



Convex

Optimization

Brennan Gebotys

Lemma

ViDi(x,y) = Vi(x) = VI(y) (4.6)

Proof:

ViDi(x,y) = Vx(f(x) = H(y) = (VI(y), x = ¥))



Convex

Optimization

ViDi(x,y) = Vi(x) = VI(y)

Proof:

ViDi(x,y) = Vx(f(x) = H(y) = (VI(y), x = ¥))
= Vif(x) = Vi (VI(y),x = )



Vfo(X,y) =

VH(x) = VI(y)

Proof:

ViDi(X,¥) = Vulf(X) — F(y) — (V(y), x — y))
— Vif(x) = Vx (V(y), X — ¥))
= Vi(x) - Vi(y) O



Convex
Optimization

Lemma

For any y € R", let 7 = N%(y) then

(Vi(y) = Vf(r))'(w—-7)<0 Vwed 4.7)



Convex
Optimization

Lemma

For any y € R", let 7 = N%(y) then

(Vi(y) = Vf(r))'(w—-7)<0 Vwed 4.7)

Proof: Recall 7 = argmin, . ,- D¢(x, y), then by optimality,
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For any y € R", let 7 = N%(y) then

(Vi(y) = Vf(r))'(w—-7)<0 Vwed 4.7)

Proof: Recall 7 = argmin, . ,- D¢(x, y), then by optimality,

VDi(m,y)" (m — w)

< Ywe X (3.5)
(VE(m) = V() (r —w) <

(4.6)
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Brennan Gebotys

Lemma

For any y € R", let 7 = N%(y) then

(Vi(y) = Vf(r))'(w—-7)<0 Vwed 4.7)

Proof: Recall 7 = argmin, . ,- D¢(x, y), then by optimality,
VDi(m,y) (r —w) <0 Ywe X (3.5)
(VH(m) = Vi) (r—w) <0  (4.6)
(VH(y) = VIm) ' (w-m) <0 O



Convex
Optimization

Brenna

Lemma

For any y € R”, let 7 = N%(y) then

Di(w,y) > D(w,7)  ¥we X (4.8)

Lemmas
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Brenna ebotys

Lemma

For any y € R”, let 7 = N%(y) then

Di(w,y) > D(w,7)  ¥we X (4.8)

Proof:

Dy(m,y) + Dy(w, ) = De(w,y) = (Vi(r) = V(y)) " (r — w) < 0(4.5)
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Brenna ebotys

Lemma

For any y € R”, let 7 = N%(y) then

Di(w,y) > D(w,7)  ¥we X (4.8)

Proof:

Dy(m,y) + Dr(w,m) — Dy(w,y) = (Vi(m) = VI(y))" (m — w) < 0(4.5)
Df(’/T,y) + Df(Wv’]T) < Df(Wa y)
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Brenna ebotys

Lemma

For any y € R”, let 7 = N%(y) then

Di(w,y) > D(w,7)  ¥we X (4.8)

Proof:

Dy(m,y) + Dr(w,m) — Dy(w,y) = (Vi(m) = VI(y))" (m — w) < 0(4.5)
Df(’/T,y) + Df(WvTr) < Df(Way)
Ds(w, ) < De(w, y),using D¢(m,y) >0 O
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Convergence

Convex
Optimization Theorem: Mirror Descent Convergence
Brenna ebotys

... mirror descent ... satisfies

1 . 2
f(?sz> — f(x*) < RL o (4.9)

Proof:

f(xs) — F(x*) < g (xs — x*)
1

n(v¢(xs) — VO(¥sr1)) " (Xs — x¥) (4.2)



Convergence

Convex

Optimization Theorem: Mirror Descent Convergence
Brenna ebotys

... mirror descent ... satisfies

1 . 2
f(?sz> — f(x*) < RL o (4.9)

Proof:

f(xs) — (x") < g7 (xs — x°)
1

(VO(Xs) — VO(¥si1)) T (Xs — X¥) (4.2)

<

I | =3

(Do (Xs, Ys+1) + Do (x*, Xs) — Do(X™, ¥s11)) (4.5)



Convergence

Convex

Optimization Theorem: Mirror Descent Convergence
Brenna ebotys

.. mirror descent ... satisfies

1 . 2
f(?sz> — f(x*) < RL o (4.9)

Proof:
f(xs) — f(x*) < gT(Xs - X")

(Vd>(xs) Vo (Ysi1)) " (Xs — x*) (4.2)
(Do (Xs, ¥s+1) + Do (X", Xs) — Do (X", Ys11)) (4.5)

(Do (Xs, Ys+1) + Do (X", Xs) — Do (X*, Xs11)) (4.8)

d\—kd\—kd\
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t
> (f(xs) — f(x7))
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Brennan Gebotys
t

(Do (x*, x1) + Z Do(Xs, Ys+1))

s=1

1
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Do (Xs, Ysi1) = P(Xs) = P(Ysr1) = (VO(Vs11), Xs — Vsr1)



Convergence

Convex Then, summing over s

Optimization
t
Z (xs) — f(x¥))

s=1

Brennan Gebotys
t

(Do (x*, x1) + Z Do(Xs, Ys+1))
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<1
o
To derive the bounds on the last term:

Do (Xs, Ysi1) = P(Xs) = P(Ysr1) = (VO(Vs11), Xs — Vsr1)
= O(Xs) = P(Vs41) = (VO(¥s41) + (VO(Xs5) — VO(X5)), Xs — Yst1)



Convergence

Gl Then, summing over s

Optimization
t
> (f(xs) — f(x7))

s=1

Brennan Gebotys
t

(Do (x*, x1) + Z Do(Xs, Ys+1))

s=1

<1
o
To derive the bounds on the last term:

Do (Xs, Ys11) = P(Xs) — P(¥s41) — (VO(Vs11), Xs — Vsr1)

= O(Xs) = P(Yst1) — (VO(Ysp1) + (VO(Xs) — V(Xs)), Xs — Vst1)

= D(Xs) — D(Vss1) — (VO(Xs), Xs — Yeirt)
— (VO(¥s41) — VO(Xs), Xs — Vsi1)



Convergence

Gl Then, summing over s

Optimization
t
Z (xs) — f(x¥))

s=1

Brennan Gebotys
t

(Do (x*, x1) + Z Do(Xs, Ys+1))

s=1

<1
o
To derive the bounds on the last term:

Do(Xs, Ys+1) = ®(Xs) = P(Vs+1) — (VO(Vs41), Xs — Yori1)

= ®(Xs) — P(¥s1) — (VO(¥si1) + (VO(Xs) — VO(Xs)), Xs — Vsi1)
= O(Xs) = D(Yst1) — (VP(Xs), Xs — Y1)

—(VO(Ys11) — VO(Xs), Xs — Vs 1)

= O(Xs) — P(¥s1) + (VP(Xs), Ys1 — Xs)

+(VO(Xs) = VO(Vsi1), Xs — Y1)
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Gl Then, summing over s

Optimization
t
> (f(xs) — f(x7))

s=1

Brennan Gebotys
t

(Do (x*, x1) + Z Do(Xs, Ys+1))

s=1

<1
o
To derive the bounds on the last term:

Do(Xs, Ys+1) = ®(Xs) = P(Vs+1) — (VO(Vs41), Xs — Yori1)

= ®(Xs) — P(¥s1) — (VO(¥si1) + (VO(Xs) — VO(Xs)), Xs — Vsi1)
= O(Xs) = D(Yst1) — (VP(Xs), Xs — Y1)

—(VO(Ys11) — VO(Xs), Xs — Vs 1)

= O(Xs) — P(¥s1) + (VP(Xs), Ys1 — Xs)

+(VO(Xs) = VO(Vsi1), Xs — Y1)

< —§||xs — Ysu1llP+n(g, Xs — Yst1)  (p-convexity (2.5) and (4.2)
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RSN [act1 (Holder Inequality):
Forwe Vandz e V*

(z,w) < [|wW]|-]|z]]. (4.10)
where V* is the dual of V.
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Goms We will also have to use some facts
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R [Fact1 (Holder Inequality):
Forwe Vandz e V*
(z,w) < [|wW]|-]|z]]. (4.10)
where V* is the dual of V.
Fact2:
a°
- bz? < — 4.11
az —bzc < b VzeR ( )
Then,

Do (X, Ysi1) < = 511X = Yeral P+ 1(9.% = Yorr)

< nllgll-lIxs = Yos1ll = 5l1%s = yeial2(4.10)
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i We will also have to use some facts
Fact1 (Holder Inequality):
Forwe Vandze Vv*

(z,w) < [|wW]|-]|z]]. (4.10)
where V* is the dual of V.
Fact2:
a°
_pR2< S R 411
az —bzc < b Vz € ( )
Then,

Do (X, Ysi1) < = 511X = Yeral P+ 1(9.% = Yorr)
< nllgll-lIxs = Yos1ll = 5l1%s = yeial2(4.10)

2 2
< llglls (4.11)
2p
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Then we have,

2 2
( (X*’X1)+t77 ||g||*)

SI—L

zt: (f(xs) — f(x™)) <
s=1
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Then we have,

t
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descent as follows,

Brennan Gebotys

Xi+1 = argmin Do (X, Vii1)

XexXnND
= argmin ®(X) — d(y) — VO(y) " (x — y)
xexXnNnD
Convergence = argmin ®(x) — Vo(y) " x
xXexnND

(4.12)
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descent as follows,
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Xi+1 = argmin Do (X, Vii1)
xexXnND

= argmin ®(x) — ®(y) — Vo(y) " (x — y)

xexXnND

Convergence = argmin ¢ ( X ) — Vo (y) Tx
xeXND

= argmin ®(x) — (VP(x;) — ngt)TX
xexXnD

(4.12)
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To lead to the next topic we observe that we can rewrite mirror
descent as follows,

Brennan Gebotys

Xi+1 = argmin Do (X, Vii1)
xexXnND

= argmin ®(x) — ®(y) — Vo(y) " (x — y)

xexXnND

Convergence = argmin CD( X ) — VCD(y)TX
xexXnND

= argmin ®(x) — (Vo(x) — ngr) ' x
xexXnND

= argminngix + ®(x) — Vo (x;) ' x
xexXnND

(4.12)
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Convex
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To lead to the next topic we observe that we can rewrite mirror
descent as follows,

Brennan Gebotys

Xi+1 = argmin Do (X, Vii1)

xeXxXnND
= argmin ®(x) — ®(y) — VO(y) " (x — y)
xeXND
Comergence = argmin d(x) — Vo(y) " x
xeXnND
= argmin ®(x) — (VO(x;) — ngr) " x
xeXnND
= argminngix + ®(x) — Vo (x;) ' x
xeXxXnND
= argmin ng¢X + Do (X, X;) (4.12)

xexXnD
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Stochastics

Conex We now consider a stochastic oracle which takes as input x € X

Optimization

et and outputs a random variable g( ) such that Eg(x) € 0f(x)

Assumptions:

Non-smooth case: there exists B > 0 such that E||g(x)||?2 < B? for
all x e .

Smooth case: there exists o > 0 such that

E|g(x) — VI(x)||? < o2 for all x € X.

We are now interested in the minimization of

_1 m
= E;ﬂ(x)

Stochastics

A more familiar view,

Loss(f) = 15 > L(x;,0)



Stochastic Mirror Descent

We’'ll look at convergence with the non-smooth assumption first.

Definition: Stochastic Mirror Descent Algorithm

Let x4 € argmin, y~p ®(x). Thenfor t > 1, let y;,1 € D such that
Vo(yir1) = VO(xt) — ngr, where E(gr) € 9f(xi), (5.1)

and
X1 € N (Ver1)- (5.2)



Stochastic Mirror Descent

Theorem: Stochastic Mirror Descent

Let ® be a mirror map 1-strongly convex on X N D with respect to
| - [, and let R? = sup,c xnp P(X) — ®(x1). Let f be convex.
Furthermore assume that the stochastic oracle is such that

E[lg(x)|? < B%. Then S-MD with = /2 satisfies

Ef(lt iXS> —f(x*) < RB\/?

s=1



Recall the Mirror Descent proof...

Mirror Descent Proof

f(xs) — f(x*) < 9" (xs — x¥)

t

S (f(xe) — f(x)) < (DM %) inlIgllz

s=1




Conyex Recall the Mirror Descent proof...

Optimization
Mirror Descent Proof

f(xs) — f(x*) < 9" (xs — x¥)

t

oy 1 \ L oPlgll?
;(f(xs)—f(x ))s5(0¢(x,xo+; 2y )

Corollary




SMD Convergence Proof

Goms Proof:

Optimization

sl Using Jensen’s Inequality, E(X) = E(E(X|Y)) and (5.3) we have

1< 1.5
Ef(ths)f(x*) < {ED(106) - 1(x)

s=1
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SRS  Using Jensen’s Inequality, E(X) = E(E(X]Y)) and (5.3) we have
1 IS
IEf<t sz) —flx) < B (flxs) ~ f(x"))
s=1 s=1
1
< SEYE@M)IX) (X — x7)
s=1

t
_ %E ; 50x6) T (xs — X°).
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Goms Proof:

Optimization

SRR Using Jensen’s Inequality, E(X) = E(E(X|Y)) and (5.3) we have
1 15
Ef<ths) —fx) < B (fxs) — (x))
s=1 s=1
1 o~
< ?EZE(Q(Xs)\Xs) (Xs — x7)
s=1
t
= ZED906)T(xs = x")
s=1
< 1E(E+li“ 2 63
< ? 77 2p — gS * :



SMD Convergence Proof
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Let f be a-strongly convex, and assume that the stochastic oracle
is such that E||g(x)||? < B?. Then PGD with s = j satisfies

a(s+1
t
2s 2B?
f(;t(tH)Xs) ) < S

The proof follows similar to our first PGD proof:
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Setting s = S and multiplying both sides by s leads to

S(1(x0) 1)) < 2 (sto-1) e F—s( 1) e~ )

Note: Expanding %, s((s — 1)xs — (s + 1)xs11) we get
(0x1 —2x2) +2(X2 —3x3) + 3(2x3 — 4Xa)... + H((t — 1)xt — (£ + 1) X¢1)
= —t(t+ 1)Xt+1
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Convex

Optimiza Theorem: Stochastic PGD

B | ot f be a-strongly convex, and assume that the stochastlc oracle
is such that E[|g(x)||2 < B?. Then PGD with ns = (s+1) satisfies

L 2s X 2B2
f(;mxs> —f(x*) < N

Following the previous proof’s structure its easy to show,

Theorem: PGD Convergence

f be a-strongly convex and L- Llpschltz on X. Then projected
subgradient descent with 7s = a(s —y satisfies

L 2s 5 212
f(;mxs> —f(x*) < ot 1)
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Similarly, comparing our results derived for Mirror Descent

Theorem: Stochastic Mirror Descent

Ef(lt zt:xs) —f(x*) < RB\/?

s=1

Theorem: Mirror Descent Convergence
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Similarly, comparing our results derived for Mirror Descent

Theorem: Stochastic Mirror Descent

Ef(lt zt:xs) —f(x*) < RB\/?

s=1

Theorem: Mirror Descent Convergence
1¢ 2
f<72xs> —f(x*) < RL\/;.

s=1

There is basically no cost for having a stochastic oracle compared
to an exact oracle!



Smooth S-MD Convergence

Convex

Optimization Now we investigate the convergence with the smooth assumption
Brennan Gebotys (E”g(x) — V)"(X)”2 S 02)




Smooth S-MD Convergence

Convex

TR Now we investigate the convergence with the smooth assumption
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Theorem: Smooth S-MD

Let ® be a mirror map 1-strongly convex on X N D w.r.t. || - ||, and
let R? = sup,cxvqp P(X) — ®(x1). Let f be convex and s-smooth
w.r.t. || - |. Furthermore assume that the stochastic oracle is such
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n= g\/? satisfies
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Convex

Optimization Now we investigate the convergence with the smooth assumption
Brenna ys (EHg(X) — Vf(X)H2 S 0'2)-

Theorem: Smooth S-MD

Let ® be a mirror map 1-strongly convex on X N D w.r.t. || - ||, and
let R? = sup,cxvqp P(X) — ®(x1). Let f be convex and s-smooth

w.r.t. || - |. Furthermore assume that the stochastic oracle is such
that E[|Vf(x) — g(x)||2 < o2. Then S-MD with stepsize =i and

n= g\/? satisfies

1< \/5 BR?
= —f(x*) < -+ —.
Ef(t ;xs+1) f(x*) < Roy[ 5+ —

Unfortunately, smoothness doesn’t improve the general stochastic
oracle :( but it’s result can be useful
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f(Xs11) — f(Xs)
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Note: f(xs) < f(x*) + 9T (xs — x*) = f(x*) — g7 (x* — X)

(X6:1) < F(X6) + G (X" = x6) + V1) = G2
+1/(8+1/m)(Do(x", X5) = Do(X", Xs:1))
<) =G (" = X6) + 84 (" = x6) + 2| V(x6) = G2
+1/(8+1/n)(Do(X",Xs) — Do(X" Xs11))
< f(x7) + V() — sl
+1/(8+1/n)(Do(x", %) = Do(x", Xs:1))
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+1/(B+1/mE(Do (X", Xs) —

! . 0277 R?

Using Jensen’s Inequality and n = g\/?

( sz+1)_f(x)<R \/: /8’?2
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i=1
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i Let m e Nand gi(x;),i = 1,..., m be independent random

N variables obtained from the stochastic oracle then mini-batch
SGD iterates the following equation:

m
X1 =TNx (Xt - ZZ@(M)) :
=
With a few assumptions:
f is 3-smooth
lg(x)l2< B
Convergence?

Using the previous theorem we can prove mini-batch SGD has a
Mini-Batch SGD convergence of

RB R?
( ZXS+1)_f(X <2\/+mlﬁt
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G Using the property of independence we get the following,

Optimization
]EII - Z gi(x x)I13

Z — VH(x), (x) — VF(x))
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BZ
]EH* Zg/ x)|5 < o

Then we can apply the previous theorem to get

/ | 2 BRZ RB mpR?
t/m t/m + t -

When would you want to use Minibatch-SGD?

When computation can be distributed between multiple
processors

Mini-Batch SGD



The End

Convex
Optimization

Brennan Gebotys

Thanks for joining!
Questions?
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