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Abstract
Attention Dropout is introduced to improve
model accuracy per iteration and model inter-
pretability.

1 Introduction

Dropout (Srivastava et al., 2014) is a simple and
efficient regularization technique. However, its
specific effect on Natural Language Processing
(NLP) tasks has not been thoroughly explored.
Larger models in deep learning have been shown
to provide better test scores (Simonyan and Zisser-
man, 2014) but their accuracy per iteration and in-
terpretability raises a significant problem in NLP.

2 Attention Dropout and Results

The probability of dropping a unit is denoted as
pdrop and the number of words in the sequence is
denoted as N . A vector of hidden size is associ-
ated with each layer which we call the layer vector.
On the forward pass, N dot product operations are
computed with the layer vector across the input’s
word embeddings to obtain attention values α.
The attention distribution is inverted and the soft-
max operation is applied to satisfy the probability
axioms as follows: α′

i = softmax(max(α)−αi).
We then sample K indices from α′, where K =
max(pdrop ∗N, 1). The K word embeddings cor-
responding to the sampled indices are set to zero.

We compared Attention Dropout to Dropout on
3 binary classification NLP datasets; Large Movie
Review Dataset (IMDB) (Maas et al., 2011),
Quora Question Pairs (QQP) (Chen et al., 2018),
and Question Natural Language Inference (QNLI)
(Wang et al., 2018). Attention Dropout outper-
forms Dropout in test accuracy on all experiments
in Table 1. The architecture used is the same as
BERT (Devlin et al., 2018) but without position
and segmentation embeddings. Both models (AD,
D) are the same except for their dropout type.

L Dataset Datasize E AD D
6 IMDB 25K 1 84.0 83.5
12 IMDB 25K 1 85.0 49.5
6 QQP 30K 1 67.1 63.0
12 QQP 30K 1 70.1 63.0
6 QNLI 20K 2 43.4 41.8

Table 1: Model test accuracy after E epochs of Atten-
tion Dropout (AD) and Dropout (D) trained on a subset
(Datasize) of the datasets, using L layers and L atten-
tion heads.

3 Discussion and Conclusion

Magnitude based pruning methods (Gomez et al.,
2019; Poernomo and Kang, 2018) are extended
by incorporating layer cosine similarity. Unlike
research in Serrà et al. 2018, layers dynamically
attend to embeddings by ignoring others. Entire
embedding vectors are dropped to preserve latent
space information, in contrast to all other Dropout
techniques which drop individual units. Moreover,
tests show that the number of units dropped with
Attention Dropout is significantly closer to empiri-
cal expectation which is likely to improve training,
for example, AD achieved a mean difference of -
281, while D showed a mean difference of 16096.
Furthermore, Attention Dropout improves model
interpretability by only managing N attention co-
efficients compared to the Transformer’s (Vaswani
et al., 2017) N2.

Attention Dropout improves accuracy per itera-
tion by maintaining latent information and attend-
ing to relevant word embeddings. Moreover, rel-
ative to sequence length we improve model inter-
pretability by providing linear explanations, com-
pared to previous research’s quadratic.
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